
Solutions for Sample Questions for Midterm 2 (CS 421 Fall 2011)  
 
On the actual midterm, you will have plenty of space to put your answers. 
Some of these questions may be reused for the exam. 
 
1. Give a (most general) unifier for the following unification instance. Capital letters denote variables 

of unification. Show your work by listing the operation performed in each step of the unification and 
the result of that step.  

{X = f(g(x),W); h(y) = Y;  f(Z,x) = f(Y,W)} 
     
Solution:  
{X = f(g(x),W); h(y) = Y;  f(Z,x) = f(Y,W)} 
 {h(y) = Y; f(Z,x) = f(Y,W)} with {X → f(g(x),W)}      by eliminate  (X = f(g(x),W)) 
 {Y = h(y); f(Z,x) = f(Y,W)} with {X → f(g(x),W)}      by orient  (h(y) = Y) 
 {f(Z,x) = f(h(y),W)} with {X → f(g(x),W), Y → h(y)} by eliminate  (Y = h(y)) 
 {Z = h(y); x=W} with {X → f(g(x),W), Y → h(y)}       by decompose  (f(Z,x) = f(h(y),W)) 
 {x = W} with {X → f(g(x),W), Y → h(y), Z → h(y)}    by eliminate  (Z = h(y)) 
 {W = x} with {X → f(g(x),W), Y → h(y), Z → h(y)}    by orient  (x = W) 
{} with {X → f(g(x),x), Y → h(y), Z → h(y), W → x}   by eliminate  (W = x) 
Answer: {X → f(g(x),x), Y → h(y), Z → h(y), W → x} 
 
 
2. For each of the following descriptions, give a regular expression over the alphabet {a,b,c}, and a 

regular grammar that generates the language described.  
a. The set of all strings over {a, b, c}, where each string has at most one a 

Solution:  (b ∨  c)*(a ∨  ε) (b ∨  c)* 
 <S> ::= b<S> | c<S> | a<NA> | ε  
<NA> ::= b<NA> | c<NA> | ε  

    
b. The set of all strings over {a, b, c}, where, in each string, every b is immediately followed by at 

least one c. 
Solution: (a ∨  c)*(bc(a ∨  c)*)* 
 <S> ::= a<S> | c<S> | b<C> | ε  
 <C> ::= c<S> 
 

c. The set of all strings over {a, b, c}, where every string has length a multiple of four. 
Solution: ((a ∨  b ∨  c) (a ∨  b ∨  c) (a ∨  b ∨  c) (a ∨  b ∨  c))* 

  <S> ::= a<TH> | b<TH> | c<TH> | ε  
  <TH> ::= a<TW> | b<TW> | c<TW> 
  <TW> ::= a<O> | b<O> | c<O> 
  <O> ::= a<S> | b<S> | c<S> 

3. Consider the following grammar:  
<S> ::= <A> | <A> <S>  
<A> ::= <Id> | ( <B>  
<B> ::=  <Id> ] |  <Id><B> | ( <B>  
<Id> ::= 0 | 1  



For each of the following strings, give a parse tree for the following expression as an <S>, if one 
exists, or write “No parse” otherwise:  
 

a. ( 0 1 ( 1 ] ( ( 1 0 ] 1 
Solution: 
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c. ( 0  ( 1 0 1]  0 ] 
Solution:  No parse tree 

4.  Demonstrate that the following grammar is ambiguous (Capitals are non-terminals, lowercase are 
terminals):  

S  →  A a B | B a A  
A  →  b | c  
B  →  a | b  



 
 
Solution:   String: bab 
 
 
                     S                                                                  S 
 
      A            a          B                                       B             a            A 
 
       b                         b                                      b                            b 
 
 

 
5. Write an unambiguous grammar generating the set of all strings over the alphabet    {0, 1, +, -} , 

where + and – are infixed operators which both associate to the left and such that + binds more 
tightly than -. 

 
         Solution: 
 
         <S> ::= <plus>  |  <S> - <plus> 
         <plus>  :: <id> | <plus> + <id> 
         <id> ::= 0 | 1 

 
6. Write a recursive descent parser for the following grammar:, 

<S> ::=  <N> % <S>  | <N> 
<N> ::= g <N> | a | b 
You should include a datatype token of tokens input into the parser, one or more datatypes 
representing the parse trees produced by parsing (the abstract syntax trees), and the function(s) 
to produce the abstract syntax trees.  Your parser should take a list of tokens as input and 
generate an abstract syntax tree corresponding to the parse of the input token list.  
Solution: 
type  token = ATk | BTk | GTk | PercentTk 
type  s = Percent of (n * s) | N_as_s  n 
and n = G of n | A | B 
 
let rec s_parse tokens  =  
    match n_parse tokens with (n, tokens_after_n) -> 
         (match tokens_after_n with PercentTk::tokens_after_percent -> 
                (match s_parse tokens_after_percent 
                 with (s, tokens_after_s) -> (Percent (n,s), tokens_after_s)) 
             | _ -> (N_as_s n, tokens_after_n)) 
and n_parse tokens = 
    match tokens 
    with GTk::tokens_after_g -> 
         (match n_parse tokens_after_g 
               with (n, tokens_after_n) -> (G n, tokens_after_n)) 
       | ATk::tokens_after_a -> (A, tokens_after_a) 



       | BTk::tokens_after_b -> (B, tokens_after_b) 
 
let parse tokens = 
    match s_parse tokens 
    with (s, []) -> s 
       | _ -> raise (Failure "No parse") 

     
 

7. Why don't we ever get shift/shift conflicts in LR parsing? 
Solution: The shift action means, when in a given state prescribing the shift, to remove the 
token from the top of the token stream and place it on top of the stack and move to the 
new state prescribed for the given state and the moved token.  There is only one token 
stream, only one stack and the state to which to go is entirely determined by the given 
state and the token moved.  Thus, there is only one way to execute a shift so we never have 
two different shifts between which to choose. 

 
 
8. Consider the following grammar with terminals *, f, x, and y, and eol for “end of line”, and 

non-termimals S, E and N and productions  
(P0)  S => E eol 
(P1)  E => E * N 
(P2)  E => N 
(P3)  N => f N 
(P4)  N => x 
(P5)  N => y 

 
The following are the Action and Goto tables generated by YACC for the above grammar:   

ACTION   GOTO   
STATE  * f x y eol S E  N 

1  s3 s4 s5     2   6   7 
2      acc     
3   s3 s4 s5         8 
4   r4  r4 r4 r4 r4      
5   r5  r5 r5 r5 r5       
6   s9     acc      
7   r2  r2  r2 r2 r2      
8   r3  r3  r3  r3  r3      
9    s3 s4 s5  

 

    10 
10  r1  r1  r1  r1  r1     

 
where si is shift and stack state i, rj is reduce using production Pj, acc is accept.  The blank cells 
should be considered as labeled with error. The empty “character” represents end of input.  
Describe how the sentence fx*y<eol> would be parsed with an LR parser using this table. For 
each step of the process give the parser action (shift/reduce), input and stack state. 



Solution: In the table below, the top of the stack is on the right 
Curr 
State 

Current Stack : Curr String Action 

  fx*y<eol> Init stack and go to state 1 
st1 st1 fx* y<eol> Shift f to stack, go to state 3 
st3 st1 : f : st3 x*y<eol> Shift x, go to  state 4 
st4 st1 : f : st3 : x : st4 *y<eol> Reduce by prod 4: N => x, ie 

remove st4 and x from the stack, 
temporarily putting us in st3, 
push N and st8 (because 
GOTO(st3, N) = st8 onto stack 
go to state 8 

st8 st1 : f : st3 : N : st8 *y<eol> Reduce by prod 3: N => f N, go 
to state 7 

st7 st1 : N : st7 *y<eol> Reduce by prod 2: E=>N, go to 
state 6 

st6 st1 : E : st6 *y<eol> Shift *, go to state 9 
st9 st1 : E : st7 : * : st9 y<eol> Shift y, go to state 5 
st5 st1 : E : st7 : * : st9 : y st5 <eol> Reduce by prod 5: N=>y, go to 

state 10 

st10 st1 : E : st7 : * : st9 : N : st10 <eol> Reduce by prod 1: E=>E*N, go 
to state 6 

st6 st1 : E : st6 <eol> Accept (prod 0: S => E<eol>) 

 
9. Describe a complete evaluation of ({x=5; y=2}, if x > 3 then y:= x+y else y:=3 fi) using each of 

structural operational semantics (aka natural semantics) and transition semantics, as given in class. 
Solution:   In both the natural semantics, and the transition semantics, let m = {x=5; y=2}. 
 
Natural Semantics:  
                                                                            m(x)=5   Id   m(y)=2   Id 
  m(x)=5   Id             Nat                                    (x,m) ⇓  5      (y,m) ⇓  2   ArithExp 
(x,m) ⇓  5       (3,m) ⇓  3   5 > 3  = true  Rel2      (x + y , m) ⇓  7                    Assign  

           (x > 3, {x=5; y=2})  ⇓   true                          (y:= x+y, m) ⇓   { x=5; y=7 }    If_true 
               (if > 3 then y:= x+y else y:=3 fi, {x=5; y=2}) ⇓  { x=5; y=7 } 

 
 
Transition Semantics: 
                                                                                                 Identifer 
                                           (x, {x=5; y=2})   (5, {x=5; y=2})      Rel1 

                                           (x > 3, {x=5; y=2})   (5 > 3, {x=5; y=2})                                             If3 
(if > 3 then y:= x+y else y:=3 fi, {x=5; y=2})   (if 5 > 3 then y:= x+y else y:=3 fi, {x=5; y=2}) 
 
                                                                  5>3 = true                               Rel3 
                                              (5 > 3, {x=5; y=2})   (true, {x=5; y=2})                                          If3 
(if 5 > 3 then y:= x+y else y:=3 fi, {x=5; y=2})   if true then y:= x+y else y:=3 fi, {x=5; y=2}) 
 



                                                                                                                          If1 
(if true then y:= x+y else y:=3 fi, {x=5; y=2})   (y:= x+y, {x=5; y=2})  
 

                                                          Identifer 
            (x, {x=5; y=2})   (5, {x=5; y=2})  ArithExp1  
       (x+y, {x=5; y=2})    (5+y, {x=5; y=2})     Assign1 
(y:= x+y, {x=5; y=2})   (y:= 5+y, {x=5; y=2})   
 

                                                             Identifer 
            (y, {x=5; y=2})   (2, {x=5; y=2})  ArithExp2  
       (5+y, {x=5; y=2})   5+2, {x=5; y=2})       Assign1  
 (y:= 5+y, {x=5; y=2})   (y:= 5+2, {x=5; y=2})    
 
                               5+2 = 7                    ArithExp3 
      (5+2, {x=5; y=2})  (7, {x=5; y=2})      Assign1                                                               Assign2 
(y:= 5+2, {x=5; y=2})(y:= 7, {x=5; y=2})                   (y:= 7, {x=5; y=2})   { x=5; y=7 } 
 
 
 

 
10. If we added to the Simple Imperative Programming Language described in class a post-fix ++ 

operator applied exclusively to identifiers in expressions, where I++ returned the value of I in the 
input memory, but had the side effect of incrementing that value in memory, what would the rules 
for if_then_else_ become in each of structural operational semantics and transition semantics? 

 
Solution: 
Since evaluation I++ changes the memory, we need to change the type of the configuration resulting 
from evaluating expressions.  Since evaluating expressions changes memory, so does evaluating 
Booleans, since Boolean expressions may contain expressions via relations.  The rules for 
if_then_else_  must reflect this change. 
 
Natural Semantics: 
     (B,m) ⇓  (true, m’)   (C,m’) ⇓  m’’        (B,m) ⇓  (false, m’)   (C’,m’) ⇓  m’’ 
        (if B then C else C’, m) ⇓  m’’              (if B then C else C’, m) ⇓  m’’ 
 
Transition Semantics: 
____________________________          _____________________________ 
(if true then C else C’, m)   (C, m)         (if false then C else C’, m)   (C’ m) 
 
                              (B,m)   (B’,m’)                              .  
(if B then C else C’, m)   (if B’ then C else C’, m’) 
 
 


